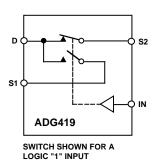


LC²MOS Precision Mini-DIP Analog Switch


ADG419

FEATURES

44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (< 35 Ω) Ultralow Power Dissipation (< 35 μ W) Fast Transition Time (145 ns max) Break-Before-Make Switching Action Latch-Up Proof Plug-In Replacement for DG419

APPLICATIONS
Precision Test Equipment
Precision Instrumentation
Battery Powered Systems
Sample Hold Systems

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG419 is a monolithic CMOS SPDT switch. This switch is designed on an enhanced LC²MOS process which provides low power dissipation yet gives high switching speed, low on resistance and low leakage currents.

The on resistance profile of the ADG419 is very flat over the full analog input range ensuring excellent linearity and low distortion. The part also exhibits high switching speed and high signal bandwidth. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

Each switch of the ADG419 conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG419 exhibits break-beforemake switching action.

PRODUCT HIGHLIGHTS

- Extended Signal Range
 The ADG419 is fabricated on an enhanced LC²MOS, trench isolated process giving an increased signal range that extends to the supply rails.
- 2. Ultralow Power Dissipation
- 3. Low R_{ON}
- 4. Trench Isolation Guards Against Latch Up
 A dielectric trench separates the P and N channel transistors
 thereby preventing latch-up even under severe overvoltage
 conditions
- 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG419 can be operated from a single rail power supply. The part is fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.

ADG419-SPECIFICATIONS1

Dual Supply (V_{DD} = +15 V \pm 10%, V_{SS} = -15 V \pm 10%, V_L = +5 V \pm 10%, GND = 0 V, unless otherwise noted)

		rsion		rsion		
Parameter	+25°C	-40°C to +85°C	+25°C	−55°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}		V_{SS} to V_{DD}	V	
R_{ON}	25		25		Ω typ	$V_D = \pm 12.5 \text{ V}, I_S = -10 \text{ mA}$
	35	45	35	45	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
LEAKAGE CURRENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.1		±0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
D : OFFI 1 I (OFF)	±0.25	±5	±0.25	±15	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.1 ±0.75	±5	±0.1 ±0.75	±30	nA typ nA max	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$ Test Circuit 2
Channel ON Leakage ID, IS (ON)	$\pm 0.75 \\ \pm 0.4$	Ξ3	±0.75 ±0.4	±30	nA max	$V_{\rm S} = V_{\rm D} = \pm 15.5 \text{ V};$
Chaimer Old Leakage 1D, 15 (Old)	±0.75	±5	±0.4 ±0.75	±30	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INI}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}		± 0.005		± 0.005	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
t _{TRANSITION}	145	200	145	200	ns max	$R_L = 300 \Omega, C_L = 35 pF;$
						$V_{S1} = \pm 10 \text{ V}, V_{S2} = \mp 10 \text{ V};$
Break-Before-Make Time	30		30		ne typ	Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 pF$;
Delay, t _D	5		5		ns typ ns min	$V_{S1} = V_{S2} = \pm 10 \text{ V};$
Zeinj, tp					110 11111	Test Circuit 5
OFF Isolation	80		80		dB typ	$R_L = 50 \Omega$, $f = 1 MHz$;
						Test Circuit 6
Channel-to-Channel Crosstalk	70		70		dB typ	$R_L = 50 \Omega, f = 1 MHz;$
C _S (OFF)	6		6		pF typ	Test Circuit 7 f = 1 MHz
$C_{\rm D}$, $C_{\rm S}$ (ON)	55		55		pF typ	f = 1 MHz
POWER REQUIREMENTS	33		33		Pr GP	
I _{DD}	0.0001		0.0001		μA typ	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ $V_{IN} = 0 \text{ V} \text{ or } 5 \text{ V}$
- DD	1	2.5	1	2.5	μA max	VIN = 0 V OI 3 V
I_{SS}	0.0001		0.0001		μA typ	
	1	2.5	1	2.5	μA max	
${ m I_L}$	0.0001		0.0001		μA typ	$V_L = +5.5 \text{ V}$
	1	2.5	1	2.5	μA max	

NOTES

-2-REV. 0

 $^{^1}Temperature$ ranges are as follows: B Version: –40°C to +85°C; T Version: –55°C to +125°C. 2Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Single Supply (V_DD = +12 V \pm 10%, V_SS = 0 V, V_L = +5 V \pm 10%, GND = 0 V, unless otherwise noted)

		ersion		rsion		
Parameter	+25°C	−40°C to +85°C	+25°C	–55°C to +125°C	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range		0 to V _{DD}		0 to V _{DD}	V	
$R_{ m ON}$	40	60	40	70	Ω typ Ω max	$V_D = +3 \text{ V}, +8.5 \text{ V}, I_S = -10 \text{ mA}$ $V_{DD} = +10.8 \text{ V}$
LEAKAGE CURRENT Source OFF Leakage I _S (OFF)	±0.1		±0.1		nA typ	V_{DD} = +13.2 V V_{D} = 12.2 V/1 V, V_{S} = 1 V/12.2 V;
Drain OFF Leakage I _D (OFF)	±0.25 ±0.1	±5	±0.25 ±0.1	±15	nA max nA typ	Test Circuit 2 $V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V};$
Channel ON Leakage I_D , I_S (ON)	±0.75 ±0.4 ±0.75	±5 ±5	±0.75 ±0.4 ±0.75	±30 ±30	nA max nA typ nA max	Test Circuit 2 $V_S = V_D = 12.2 \text{ V/1 V};$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL}		2.4 0.8		2.4 0.8	V min V max	
Input Current I_{INL} or I_{INH}		±0.005 ±0.5		±0.005 ±0.5	μΑ typ μΑ max	$V_{\rm IN} = V_{\rm INL}$ or $V_{\rm INH}$
DYNAMIC CHARACTERISTICS ² t _{TRANSITION}	170	250	170	250	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = 0 V/8 V$, $V_{S2} = 8 V/0 V$;
Break-Before-Make Time Delay, $t_{\rm D}$	60		60		ns typ	Test Circuit 4 $R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = +8 V$; Test Circuit 5
OFF Isolation	80		80		dB typ	R _L = 50 Ω , f = 1 MHz; Test Circuit 6
Channel-to-Channel Crosstalk	70		70		dB typ	$R_L = 50 \Omega, f = 1 MHz;$ Test Circuit 7
C_S (OFF) C_D , C_S (ON)	13 65		13 65		pF typ pF typ	f = 1 MHz f = 1 MHz
POWER REQUIREMENTS I _{DD}	0.0001		0.0001		μA typ	$V_{DD} = +13.2 \text{ V}$ $V_{IN} = 0 \text{ V or } 5 \text{ V}$
I _L	1 0.0001 1	2.52.5	1 0.0001 1	2.52.5	μΑ max μΑ typ μΑ max	V _L = +5.5 V

Table I. Truth Table

Logic	Switch 1	Switch 2
0	ON	OFF
1	OFF	ON

ORDERING GUIDE

Model	Temperature Range	Package Option*
ADG419BN	-40°C to +85°C	N-8
ADG419BR	-40°C to +85°C	SO-8
ADG419TQ	-55°C to +125°C	Q-8

^{*}N = Plastic DIP, Q = Cerdip, SO = 0.15" Small Outline IC (SOIC).

PIN CONFIGURATION DIP/SOIC

REV. 0 -3-

 $^{^{1}}$ Temperature ranges are as follows: B Version: $-40\,^{\circ}$ C to $+85\,^{\circ}$ C; T Version: $-55\,^{\circ}$ C to $+125\,^{\circ}$ C.

²Guaranteed by design, not subject to production test. Specifications subject to change without notice.

ADG419

ABSOLUTE MAXIMUM RATINGS1 Lead Temperature, Soldering (10 sec) +300°C $(T_A = +25^{\circ}C \text{ unless otherwise noted})$ $m V_{DD}$ to $m V_{SS}$+44 V Plastic Package, Power Dissipation400 mW V_{SS} to GND+0.3 V to -25 V Lead Temperature, Soldering (10 sec) +260°C or 30 mA, Whichever Occurs First Lead Temperature, Soldering Vapor Phase (60 sec). +215°C Infrared (15 sec) +220°C (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range ¹Stresses above those listed under "Absolute Maximum Ratings" may cause Industrial (B Version)-40°C to +85°C permanent damage to the device. This is a stress rating only and functional Extended (T Version)-55°C to +125°C operation of the device at these or any other conditions above those listed in the Storage Temperature Range-65°C to +150°C operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. Cerdip Package, Power Dissipation600 mW ²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY		C_D , C_S (ON)	"ON" switch capacitance.	
$ m V_{DD}$	Most positive power supply potential.	t _{TRANSITION}	Delay time between the 50% and 90% points of the digital inputs and the switch "ON"	
V_{SS}	Most negative power supply potential in dual			
	supplies. In single supply applications, it may be connected to GND.		condition when switching from one address	
V_{L}	Logic power supply (+5 V).	t_{D}	"OFF" time or "ON" time measured be- tween the 90% points of both switches when switching from one address state	
GND	Ground (0 V) reference.			
S	Source terminal. May be an input or an			
	output.		to the other.	
D	Drain terminal. May be an input or an output.	V_{INL}	Maximum input voltage for logic "0."	
		$ m V_{INH}$	Minimum input voltage for logic "1."	
IN	Logic control input.	$I_{INL}(I_{INH})$	Input current of the digital input.	
R_{ON}	Ohmic resistance between D and S.	Crosstalk	A measure of unwanted signal which is	
I_{S} (OFF)	Source leakage current with the switch		coupled through from one channel to another as a result of parasitic capacitance.	
	"OFF."	Off Isolation	A measure of unwanted signal coupling	
I_D (OFF)	Drain leakage current with the switch "OFF."		through an "OFF" channel.	
I I (OND		I_{DD}	Positive supply current. Negative supply current.	
$I_D, I_S (ON)$	Channel leakage current with the switch "ON."	I_{SS}		
$V_D(V_S)$	Analog voltage on terminals D, S.			
C_{S} (OFF)	"OFF" switch source capacitance.			

TRENCH ISOLATION

In the ADG419, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, the result being a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode which is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch up. With trench isolation, this diode is removed, the result being a latch-up proof switch.

Trench isolation also leads to lower leakage currents. The ADG419 has a leakage current of 0.25 nA as compared with a leakage current of several nanoamperes in non-trench isolated switches.

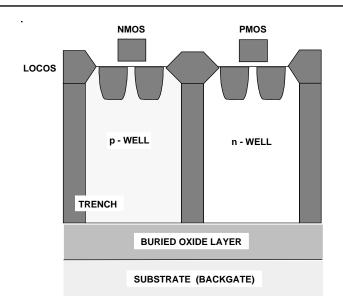


Figure 1. Trench Isolation

Typical Performance Graphs

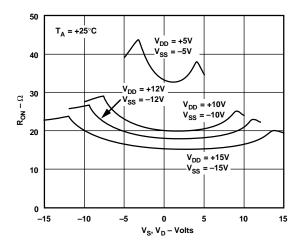


Figure 2. R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

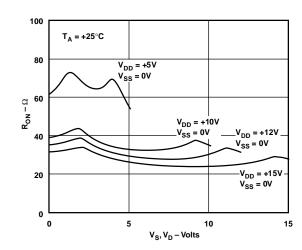


Figure 3. R_{ON} as a Function of V_D (V_S): Single Supply Voltage

REV. 0 –5–

ADG419

Typical Performance Graphs

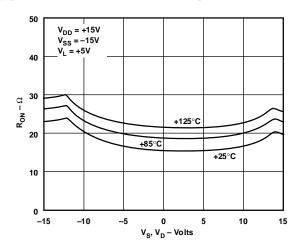


Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures

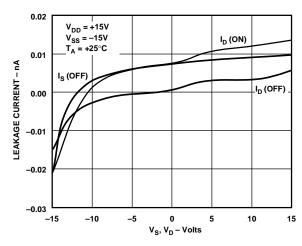


Figure 5. Leakage Currents as a Function of V_S (V_D)

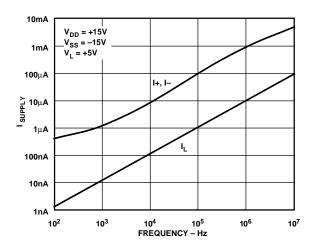


Figure 6. Supply Current vs. Input Switching Frequency

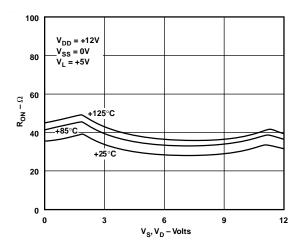


Figure 7. R_{ON} as a Function of V_D (V_S) for Different Temperatures

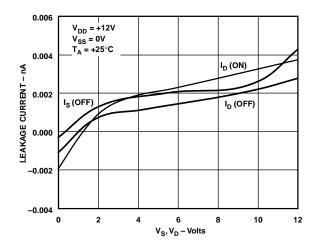
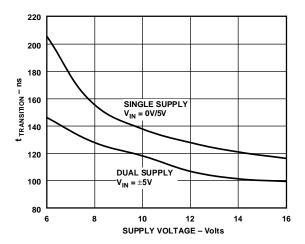
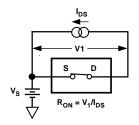
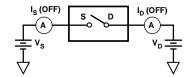
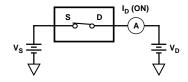


Figure 8. Leakage Currents as a Function of V_S (V_D)

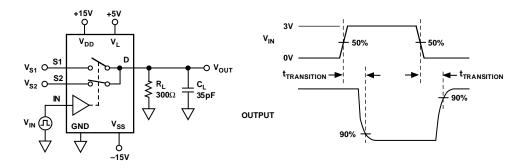



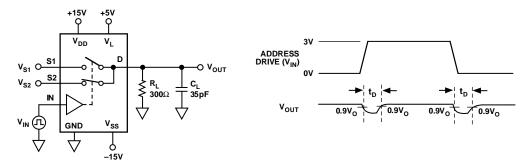

Figure 9. Transition Time vs. Power Supply Voltage


-6- REV. 0

ADG419

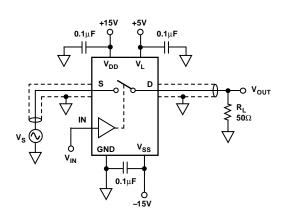
Test Circuits



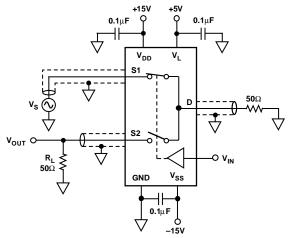

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage



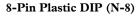
Test Circuit 4. Transition Time, t_{TRANSITION}

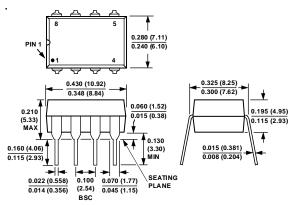


Test Circuit 5. Break-Before-Make Time Delay, t_D

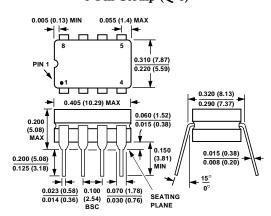
REV. 0 -7-

Test Circuit 6. Off Isolation

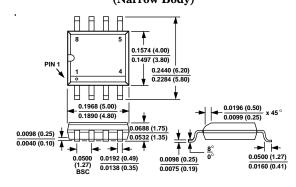



CHANNEL TO CHANNEL CROSSTALK = 20 x LOG $|V_S/V_{OUT}|$

Test Circuit 7. Crosstalk


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).



8-Pin Cerdip (Q-8)

8-Pin SOIC (SO-8) (Narrow Body)

-8- REV. 0